COURSES \ Mathematics I \ Integral calculus \ 

Riemann integral
Lower sum, upper sum, Riemann sum, lower integral, upper integral, Riemann integral, claculating the Rieman integral of y=^2 and y=sin(x) using the definition, Newton-Leibnitz formula 

Integrable functions
Sufficient conditions for a function to be Riemann-integrable, examples of integrable and non-integrable functions 

Basic integration
Basic integration table and rules, integration by parts, integration by substitution, two types of substitution  

Integrating rational functions
Partial fractions decomposition of a rational function, integrating the four types of partial fractions  

Advanced integration methods
Integrating rational trigonometric functions using the tan(x/2)=t, sin(x)=t, and cos(x) substitutions, integrating irrational functions, using Euler substitutions, problems to solve 

Definite integrals
Applying the integration-by-parts and substitution methods to calculating definite integrals, estimating definite integrals, mean-value theorems for definite integrals 

Improper integrals
Defiite integrals of unbounded functions, definite integrals over unbounded intervals, determining the convergence of improper integrals    

Integral applications
Area of a plane figure in cartesian and polar coordinates, length of a curve, volume of a body created by rotation, examples

Verze pro tisk