
Infinite sets

We say that a set A is infinite if a proper subset B exists of A such 
that there is a bijection

BA a:ϕ

It is easy to see that no set with a finite number of elements can 
satisfy such a condition whereas, for example, for the set 
A={1,2,3,...}we can define the a set  B={2,3,4,...} and a mapping 

( ) ( ) K,2,1,1 =+= iii ϕϕ This mapping is a bijection.ϕ as follows:



Integers

The infinite set N = {1,2,3,...} is called natural numbers or positive 
integers.

The equation a + x = b has no solution for some positive integers
such as 3 + x = 1 and so we add 0 and negative integers to obtain

the set                                                   of integers.

The set Z is ordered by the relation ≤. If, for ,, Z∈ba we have
,ba ≤ we say that a is less than or equal to b. We also write .ab ≥

Note that, while N has the least element 1, in Z, no such element 
exists.

and say that b is greater than or equal to a.

{ }, 3, 2, 1,0,1,2,3,Z = − − −K K



Rational numbers

For some integers, such as b = 3 and a = 7, the solution of the 

equation b.x = a is not an integer so we proceed as follows.

Let us consider the set S of all the pairs a/b of integers
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We shall consider every two such pairs  a/b and c/d identical 

writing                    if a.d = c.b. It is easy to prove that ≈ is an 

equivalence and as such defines a partition Q of the set of all pairs  

a/b. The set Q is then referred to as rational numbers.

dcba ≈



For                                 we can find, say,        such that

a0 and b0, b0 > 0, are relatively prime integers, that is, their only 

common divisor is 1.

For rational numbers                                            we put 
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This correctly defines an order on the set of all rational numbers 



Instead of rational numbers as sets we rather work with the 
„fractions“ representing them.  Further we define the usual 
arithmetic operations:

, 0a c ad cb b d
b d bd

+
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, 0a c ac b d
b d bd
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Cardinality of rational numbers

The set Q of rational numbers has the same cardinality as the 
set N of natural numbers.
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For every two different rational numbers a/b ≤ c/d, there is a 

rational number p/q such that p/q ≠ a/b,c/d and a/b ≤ p/q ≤ c/d.
Proof.

We have a.d ≤ b.c, a/b ≠ c/d, which we will denote by a.d < b.c.

Let us consider the rational number p/q = (a.d + b.c)/(2.b.d).

a.q = a.2.b.d = 2.b.a.d < b.a.d + b.b.c < b.(a.d + b.c) = b.p

In a similar way, we can prove that p.d < c.q. 



On account of the preceding property, we say that the set Q of 
rational numbers is dense. 

Although the rational numbers are densely arranged, there are 
still "holes" between them as can be demonstrated by the 
following argument:

number. rational anot  is 2

Suppose prime. relatively are ,,0  where2 bab
b
a >=

.integer  somefor  222 22 kkaab
b
a =⇒=⇒= The last implication 

follows from the fact that the square of an odd number is again odd. 

Then ( ) 22222 2422 kbkkb =⇒== .integer  somefor  2 and mmb =

Thus we get a contradiction since a and b are relatively prime.



Real numbers

By "filling up the holes" in the set of rational numbers, we can 
construct a set of real numbers denoted by R.

This process is too sophisticated to fit in the scope of the present 
course and so we will just settle for listing the properties of R.



By the ε-neighbourhood of a real number x we understand the 
interval 

( )., εε +− xx

xx ε− x ε+



Properties of real numbers

R is ordered by the relation ≤

Every equation a + x = b where a,b are real has 
a real solution 

Every equation a . x = b where a,b are real and a ≠ 0, 
has a real solution 

Every equation x2 = b where b > 0 is real has a real 
solution 

In every ε-neighbourhood of a real number a, there are 
an infinite number of rational numbers and an infinite 
number of real numbers that are not rational.



Least upper bound

Let M be a set of real numbers. We say that b is an upper bound
of M if .every for  Mxxb ∈≥

upper bounds

Let us denote by U(M) the set of all the upper bounds of M. It is 
another property of real numbers that every such set has the 
least element l, that is,

M

b1 b2b3 b4 b5 b6 ...

( )MUxxlMUl ∈≤∈ ,),(

Such an l is called the least upper bound of LUB or 
sometimes a supremum.



Greatest lower bound

Let M be a set of real numbers. We say that b is an upper bound
of M if .every for  Mxxb ∈≥

lower bounds

Let us denote by L(M) the set of all the lower bounds of M. It is 
another property of real numbers that each such set has the greatest 
element h, that is,

M

b1b2 b3 b4 b5 b6 ...

( )MUxxhMUh ∈≥∈ ,),(

Such an h is called the greatest lower bound of GLB or 
sometimes an infimum.



Cardinality of R

The set R of real numbers has a greater cardinality that the set of 
natural numbers N.

Every real number r in the interval (0,1) can be written as

r = 0.x1x2x3... where x1, x2, x3, ... are digits 0 to 9.

r1 = 0.458796280 ...

r2 = 0.221087755 ...         r = 0.5382 ...

r3 = 0.997214120 ...

r4 = 0.521136987 ...

...

...

r cannot be any of the numbers r1, r2, r3, ...


