
Solving the following system of 2 equations with two unknowns

22221

11211

byaxa
byaxa

=+
=+

by the Gauss elimination method, we obtain

21122211

211211

21122211

122221

aaaa
abbay

aaaa
ababx

−
−=

−
−=

provided that 021122211 ≠− aaaa



The expressions in the numerators and denominators can be 
conveniently expressed by the following schemes:
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The expressions
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are referred to as the determinants of the matrices 
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Thus, for the system
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Similarly, for a system of three equations with three unknowns,

we could easily establish by the Gauss elimination method that,
for example,
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Sometimes we use the following auxiliary scheme
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The expression

is called the determinant of a 3 by 3 matrix and, for
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Similar schemes can also be devised for calculating systems of 
linear algebraic equations of orders higher than three. They are
also called determinants with the following denotations 
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Thus the determinant of a square n by n matrix A is a number. To 
define determinants of orders higher than 3, we have to introduce 
the notion of a permutation. 

Permutation

A permutation of the set Pn=                   is any one-to-one 
mapping of  Pn onto itself. It is most conveniently defined by an 
ordered sequence                      of the numbers from Pn.  
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These are, for example, all the permutations of { }3,2,13 =P
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Parity of a permutation

For a permutation                          we say that it has the even 
parity or that it is even or that                 if an even number k of 
swaps can be used to transform it to the so called unity 
permutation 

e = (1,2, ..., n).

( )niiip ,,, 21 K=

A permutation with the odd parity is defined in an analogous 
way. For an odd permutation p we put 
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For example (1,4,3,2) is odd since we have
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The summation is performed for all the permutations of 

{1,2, ..., n} 



It is very impractical to calculate determinants using the definition. 
Several other methods exist, one of them uses the notion of an 
algebraic complement,  
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For a matrix
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Properties of determinants
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If, in a matrix, we add a linear combination of several rows 
(columns) to another row (column) in the matrix, the 
determinant of the resulting matrix remains the same. 

If we swap two rows or columns in a matrix, the resulting 
matrix has the same determinant but with an opposite sign 



We can use these properties to calculate the determinant of a matrix. 
Using the above-described operation, we transform the matrix to a 
staircase matrix an then use the following formula:
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Cramer's rule
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