
Extending a displacement

A displacement    defined by a pair              where l is the length 
of the displacement and α the angle between its direction and the 
x-axix can be "extended" by multiplying its "distance" 
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Thus any real number a defines an action consisting in extending 
the length of every displacement by a.
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Properties of the extension action 

For any displacements                and real numbers a, b, we can 
easily prove 

( )1 2 1 2a a a⋅ ⊕ = ⋅ ⊕ ⋅d d d d

( )a b a b⊕ ⋅ = ⋅ ⊕ ⋅d d d

( ) ( )a b ab⋅ ⋅ = ⋅d d
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Another method of defining a displacement

( ),l α=d
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Thus the set of all the displacements in a plane can be viewed as 
the set of all pairs (x, y) of real numbers. It is easy to prove that the 
operation  ⊕ of composition of two displacements and that of an 
extension can be defined as follows 

( ) ( ) ( )21212211 ,,, yyxxyxyx ++=⊕
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Vector space

A vector space               is a set V which, together with the binary 
operation ⊕, forms an Abelian group and   is a mapping   

( )⋅⊕,,V
⋅

VVR →×⋅ :

such that, for every                                    , we have 1 2 3, , , ,V a b R∈ ∈v v v

( )1 2 1 2a a a⋅ ⊕ = ⋅ ⊕ ⋅v v v v

( )a b a b+ ⋅ = ⋅ ⊕ ⋅v v v

( ) ( )a b ab⋅ ⋅ = ⋅v v

1⋅ =v v



Conventions

Sometimes we will just write V instead of ( )⋅⊕,,V

Save in cases where this might cause confusion, we 
will write + instead of ⊕

Save in cases where this might cause confusion, we 
will leave out the sign • for the operation of extension

The elements of a vector space V are called vectors 
and denoted by letters with arrows (as opposed to the 
real numbers, which are called scalars here). 

The unity element in the Abelian group is called the 
zero vector.



By                               we will denote the set of all linear 

combinations of vectors 

Linear combination of vectors

Let                              and                           .1 2, , , n V∈v v vK Rccc n ∈,,, 21 K

If                                           , we say that     is a  linear1 1 2 2 n nc c c= + + +v v v vL v

combination of the vectors 1 2, , , n V∈v v vK
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1 2, , , nv v vK



Generating set

Let V be a vector space and G a finite subset of V. If, for every,           
V∈v we have                   , then we say that G is a generating 

set for V or that G generates V.
( )Lin G∈v
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Linearly independent vectors

Let V be a vector space and 1 2, , , n V∈v v vK

If 1 1 2 2 1 2 0n n nc c c c c c+ + + = ⇒ = = = =v v v oL L

we say that vectors are linearly independent. 

Otherwise we say that they are linearly dependent. 
1 2, , , nv v vK



If                             are linearly dependent,  1 2, , , n V∈v v vK

we can assume that, in the expression                           , 

say,            . Then 
1 1 2 2 n nc c c+ + + =v v v oL
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= − − − − − −v v v vL

and thus       is a  linear combination of 1v 1 2, , , nv v vK

Vectors                           are linearly independent if and only if 

none of the vectors is a linear combination of the others.  
1 2, , , n V∈v v vK



A basis of a vector space

Let V be a vector space and B its finite subset. We say that B is a 
basis of V if B is a linearly independent generating set.

Bases of a vector space have the following properties:

Every two bases of a vector space have the same number of 
vectors

Every linearly independent subset of vectors can be completed
to form a basis 

Every basis is a maximal independent set

Every basis is a minimal generating set
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The properties of the bases of a vector space can be proved using 
the following Steinitz theorem: 

Let                               be a basis of a vector space V. { }1 2, , , nB = v v vK

Let                                be an independent set of vectors in V. { }1 2, , , kU = u u uK

nk ≤Then            and B contains (n − k) vectors                        such
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To prove the Steinitz theorem we can use the following exchange 
lemma

Let                       be a basis in V. For any non-zero vector 1 2, , , nv v vK V∈u

there exists a vector vi such that { }1 2 1 1, , , , , , ,i i n− +v v v u v vK K

is a basis in V.



Dimension of a vector space

If a vector space V has a basis                     we say that V has 

dimension n or that V is an n-dimensional vector space. 
2, , , n1v v vK

The above definition is correct since any 

two bases have the same number of 

vectors. 



Let V be a vector space with a dimension n and let { }1 2, , , nB = b b bK

be its basis. Then, for every           , there exists a unique set of 

real numbers {u1, u2, ..., un} such that 

V∈u

1 1 2 2 n nu u u= + + +u b b bL

The sequence (u1, u2, ..., un) is called the coordinates of vector u
in basis B.



An n-dimensional vector space V may be identified with the vector 
space of all n-tuples of real numbers (u1, u2, ..., un) with the 
operations ⊕ and • defined as 

( ) ( ) ( )nnnn vuvuvuvvvuuu +++=⊕ ,,,,,,,,, 22112121 KKK

( ) ( )nn auauauuuua ,,,,,, 2121 KK =⋅


