
Vector space V2 of displacements in a plane
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Using the basis          , we can identify the vector space V2 of 
displacements in a plane with the vector space of all the pairs 
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Vector space V3 of 3D displacements
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Using the basis              we can identify the vector space V3
with the vector space of all the triples                  of real 
numbers                    
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The angle of two displacements in a plane 
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The expression                   is called the scalar product of  vectors 
u, v . It is sometimes written as        or just uv and also called a dot
product ot inner product.
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If ϕ is the angle of u and v the scalar product can also be 
expressed in terms of the lengths and angles of u and v:
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Scalar product for 3D vectors is defined in an analogous way. 

For vectors or displacements                                    that make

an angle of  ϕ, we have
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Properties of scalar products

For any vectors u, v, w and a scalar a, we have
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Orthogonal vectors

We say that two vectors  u, v are orthogonal or perpendicular to 
each other if

0=uv

If vectors are viewed as displacements either in a plane or in a 3D 
space, orthogonal vectors are really perpendicular to each other in 
the geometric sense.
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Orthonormal basis of a vector space

We say that                     is an orthonormal basis of a vector space 
V if  
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This is sometimes expressed in shorthand notation as
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where       is referred to as Kronecker's symbol j
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Vector product
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w indicates the direction in 
which a screw cuts through 
when turned from u to v in 
the anticlockwise direction 

αsinvuw =

u
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in 3D(also cross product)



Let                                                , then the vector product( ) ( )321321 ,,,,, vvvuuu == vu vuw ×=

may be expressed using the following determinant:
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Let                                                , ( ) ( ) ( )321321321 ,,,,,,,, wwwvvvuuu === wvu

Mixed triple product

The expression                   is sometimes denoted  ( )vuw ×⋅ [ ]vuw ,,

and referred to as the mixed triple product of the vectors u, v, 

and w. Sometimes it is also called scalar triple product or 

box product.
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is the volume of the parallelepiped defined by the 

vectors w, u, v.
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