
Vector subspace

Let U be a subset of the underlying set V of a vector space 

( ), ,V V= + ⋅

We say that U is a vector subspace of the vector space V if

1)                                              

2) 

, :U U∀ ∈ + ∈x y x y

, :U a R a U∀ ∈ ∀ ∈ ⋅ ∈x x



Linear manifold

Let V be a vector space and U its subspace. Further let  0 .V∈x

We will call the set                                            a linear 
manifold of the vector space V. 

( ) { }0 0, |M U U= + ∈x x u u

We will also write                                              and say that the 
manifold M has been created from U through a shift by    

0 0 or M U U M= + = −x x
0x

The dimension of a linear manifold                   is  the 
dimension of U.

( )0,M U x
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system of equations

homogenized system
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All the solutions of 

form a vector space                         with a basis ( )1 2=Lin ,U u u 1 2,u u

which is a vector subspace of the vector space 

( ){ }1 2 3 4 1 2 3 4, , , | , , ,V x x x x x x x x R= ∈
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The original system
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Thus all the solutions of 

form a 2-dimensional linear manifold  ( )0 1 2Lin ,M = +x u u
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