
Exponential functions
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We could prove that the function                  can even be 

defined for irrational real numbers by "filling up the holes 

in a "smooth way".
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Logarithmic functions

For each exponential function                 we can define its inverse 
since f (x) is a one-to-one mapping   
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The number             is called the logarithm of x to the base axalog
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The logarithm of x to the base e is called

the natural logarithm of x.


