
What is the best way

of defining a tangent line

to a curve?

... a tangent line to a curve 
touches it at a single point ...

? 



A handful of counter-examples- all the following straight lines 
should be tangent lines, too 

… touches the curve at 
more than one point …

… cuts rather than 
touches …

… the tangent line to a straight line is 
the straight line itself …



This should not be a 
tangent line
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The tangent line to a curve at a point A can be defined as the 
straight line that passes through A and has a slope s to which the 
following sequence of slopes approaches  
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as xi approaches a.

This is formally denoted as 
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Example Find a tangent line t to the curve y = x2 at x = 1.
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To calculate                    we cannot simply substitute 1 for x since 

this leads to the meaningless expression 
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Example Find the tangent t to the curve y = x3 at x = 0.
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Example

Find the slope of the tangent line of  the curve y = x4 at x = a.
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Similarly, we can prove that the slope of the tangent line to 

y = xn at any point a is
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We can now view the point a at which the tangent to a function 
y = f (x) is to be found as an independent variable and so the 
slope s becomes a function s = s (a).

Instead of using another letter a to denote the independent variable 
we use also x and denote the slope function  

( )'y f x=

f prime of x
the derivative of f

Other notations
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•
in physics



speed or rate of change at t

Suppose a car starts from Brno to Prague at time 0 and and at any 
time t, its position on the motorway measured from Brno is given 
by a function y = f (t). 
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Higher order derivatives

If             has a derivative in                    then this derivative is 

called the second derivative of           and  denoted          
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similarly, we can define derivatives of arbitrary orders if 
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