
If a function                 has a derivative at a,

then it is continuous at a. 
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The reverse assertion of the preceding theorem is not true, 
that is, if a function is continuous at a, it need not have a 
derivative at a.   
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, we say that           is bounded in 

If a function            is continuous at every point 
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we say that it is continuous over the open interval           .
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If, moreover, it is continuous on the right at a and on 

the left at b, we say that it is continuous over the closed 

interval [ ], .a b
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If a function            is continuous over a closed interval   , then  ( )f x [ ],a b
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it reaches in          its maximum and minimum values M,m[ ],a b

for any                    there is a                  such that[ ],c m M∈ [ ],d a b∈ ( )f d c=

m

M

a b

c

d



Counterexample

Not defined and thus 
not continuous at 0

Not bounded
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Counterexample

Not continuous at x1 and x2 No maximum or 
minimum value
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Counterexample

Not continuous at x1 Value c not reached
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Rolle's theorem

Let a, b be two numbers, a < b. Let            be a function which is 

continuous over the closed interval            and has a derivative for 

every                   Assume that 
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The mean value  theorem

Let a, b be two numbers, a < b. Let            be a function which is 

continuous over the closed interval            and has a derivative for 

every                  Then there exists a point                such that 
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If                    for                   and          is continuous over          , 

then           is strictly increasing in 
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Let                        and suppose               By the mean value 

theorem, there exists a point c such that                   and
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If                    for                   and          is continuous over          , 

then           is strictly decreasing in 
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theorem, there exists a point c such that                   and
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