
Calculating definite integrals by parts
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Calculating definite integrals using substitutions
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Could we calculate the integral 

2
3 2

0

1 x dx−∫

using the substitution 

cosx t=

?



Estimates of definite integrals
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Estimates of definite integrals

If                      are continuous for                   andmoreover                 

( ) ( ) ( ) ( )
b b b

a a a

m x dx f x x dx M x dxϕ ϕ ϕ≤ ≤∫ ∫ ∫

( ) ( ),f x xϕ a x b≤ ≤

( ) 0xϕ ≥ then

where ( )  for .m f x M a x b≤ ≤ ≤ ≤



Estimates of definite integrals
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Mean value theorem for definite integrals I
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Mean value theorem for definite integrals II
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