
DOUBLE INTEGRAL 
 

Perhaps the simplest motivation for the introduction of a double integral is the need to 
establish the volume of a solid bounded by a continuous function ( )yxf ,  defined over 
a bounded closed planar area M. 
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PARTITION OF A PLANAR AREA 
Let … x-3 , x-2, x-1, x0, x1, x2, x3, … and … y-3 , y-2, y-1, y0, y1, y2, y3, … be sequences of 

real numbers such that  −∞=−∞→ n
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We say that the perpendicular grid formed by the straight lines 
,3,2,1,0,1,2,3,,3,2,1,0,1,2,3, KKKK −−−==−−−== nyynxx nn  

is a partition of the xy-plane. Let M denote a bounded closed area.  
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THE INTEGRAL SUMS 

Let ( )yxf , be a function defined on M. Let us denote ,, 11 jjjiii xyyxxx −=∆−=∆ ++  
and define the 
 
 lower integral sum  
  

 
( )∑∑ ∆∆=

→∆
→∆

j
jimm

iy
x

L yxyxfI
ji

j

i

,lim
0max
0max  

where ( )
( ) [ ] [ ] ( ),,inf,

11 ,,,
yxfyxf

jjii
ji yyxxyx

mm
++ ×∈

=  and 

 
the upper integral sum  
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•  The sums are taken for those values of i and j for which the square 

[ ] [ ]jjii yyxx ,, 11 −− ×  has a non-empty intersection with M. 
 

•  The symbol ( ) [ ] [ ] ( )yxf
jjii yyxxyx

,inf
11 ,,, ++ ×∈  denotes the infimum or the greatest lower 

bound (GLB) of the function ( )yxf ,  over the rectangular area [ ] [ ]1,, +× jjii yyyx  

 

•  The symbol ( ) [ ] [ ]
( )yxf
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11 ,,, ++ ×∈
 denotes the supremum or the least upper 

bound (LUB) of the function ( )yxf ,  over the rectangular area[ ] [ ]1,, +× jjii yyyx  



 
DOUBLE INTEGRAL 

 
If both the integral sums IL  and  IU of  ( )yxf ,  exist with  IL = I U, we say that the 

function ( )yxf ,  is integrable over M or with respect to M and put 
 

( ) dydxyxfII
M

UL ∫∫== ,
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The expression 
( ) dydxyxf

M
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is called the double integral of ( )yxf ,  with respect 

to M. 



ADDITIVE PROPERTIES OF DOUBLE INTEGRAL 
 

If nccc K,, 21  are constants and ),(,),,(1 yxfyxf nK  are integrable functions 
with respect to an area M, then ),(),(11 yxfcyxfc nn++K  is an integrable 
function with respect to M and 
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If nMM ,,1 K  are pair-wise disjunct bounded closed planar areas, 

nMMM ++= L1  and ( )yxf ,  a function integrable with respect to all 

niM i ,,1, K= . Then ( )yxf ,  is integrable with respect to M and 
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EXAMPLE 
Prove that the double integral of ( ) yxyxf −−=1, with regard to an area M given by 

the inequalities 1,0,0 ≤+≥≥ yxyx exists and calculate its value. 
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The figure on the right shows the grid that we will use to partition M. It is not difficult 

to establish that the lub and glb of ( )yxf ,  over the red area is n

0
1− and 
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1
1− respectively, similarly, for the blue, green, yellow, and brown areas we obtain the 
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1
1− , n

2
1− ; n

2
1− , n

3
1− ; 

n

3
1− , n

4
1−  and n

4
1− , n

5
1− .  Clearly, it takes 

( )
2

1
21

+
=+++

nn
nL  squares to 

cover M each square having an area of 2

1

n . This gives us the following expressions 

used in the definitions of integral sums for ( )yxf , : 
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Since, clearly, ( ) LL
n

InI =
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lim and ( ) UU
n
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lim , all we have to do now is calculate 

these limits. 
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NOTE 1 

The sum 
2222 21 nSn +++= L can be calculated as follows. Denote by nS  the sum 

n+++ L21 . Thus we have 
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Adding up these equations yields 
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NOTE 2 
 

As far as the sum ( ) ( )( ) ( )( ) ( )nnS nn 132211 −+++=− L  is concerned, note that, if we put 
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and, using the l' Hospital rule, we have  
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Even such a relatively simple example as the one we have calculated shows that it is 

very difficult to calculate a double integral using the definition. For more complex 

functions it becomes almost impossible.  

 

Fortunately, most of the planar areas occurring in engineering problems over which a 

double integral is to be calculated can be broken down into some elementary figures. 

For these figures, the double integral can be calculated using a method based on 

Fubini's theorem. Owing to the additive properties of double integral, it suffices to add 

up the double integrals over the elementary figures.   

 
   



THE φ(x)-FIGURE 
 
Let ( ) ( )xx 21 , ϕϕ  be functions continuous for 21 xxx ≤≤  with ( ) ( )xx 21 ϕ<ϕ . We will 
define a planar figure F, which we will call a φ(x)-figure, bounded on the left and right 
by the straight lines 21, xxxx ==  and, above and below, by the curves ( )xy 1ϕ= , 

( )xy 2ϕ= .  
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THE ψ(y)-FIGURE 
 

Let ( ) ( )yy 21 , ψψ  be functions continuous for 21 yyy ≤≤  with ( ) ( )yy 21 ψ<ψ . We 
will define a planar figure G, which we will call a ψ(y)-figure, bounded above and 
below by the straight lines 21, yyyy == and, on the left and right, by the curves 

( )yx 1ψ= , ( )yx 2ψ= .  
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FUBINI'S THEOREM 
Let F be a φ(x)-figure and G a ψ(y)-figure. Let ( )yxf ,  be a function integrable with 

respect to F and ( )yxg ,  a function integrable with respect to G. Then we can write 
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The expressions on the right-hand sides of (1) and (2) are called iterated integrals  and 
sometimes we use the following notation 
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OTHER PROPERTIES OF DOUBLE INTEGRAL 
 
Let ( )yxf ,  be a function integrable over a bounded closed area M and let 

( ) byxfa ≤≤ ,  for ( ) Myx ∈, .  It can be easily proved using the definition that 
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where M denotes the area of M. 
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This picture demonstrates the last property 
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