
DOUBLE INTEGRAL OVER RECTANGULAR AREAS

Clearly, any rectangle [ ] [ ]dcbaR ,, ×= is both a ( )xϕ and a

( )yψ figure and integration with respect to this area is ext-

remely simple using iterated integrals. 
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POLAR COORDINATES

Some planar figures are better expressed using polar coordinates. 
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For example to calculate a double integral over the following 
figure
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we would have to partition the figure into three to be able to 
transform the double integral into an iterated one
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However, in the polar co-ordinate system, the same figure could be 
expressed as an ordinate set expressed in the polar co-ordinates    

[ ]ϕρ, such that 32 ≤≤ ρ and πϕ ≥≤0
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CHANGE OF COORDINATES

Could we use this transformation when calculating the double 
integral of a function ( )yxf , ? In other words, could we  sub-

stitute ϕρcos for x and ϕρsin for y and integrate ( )yxf ,

with respect to R ? The point that has to be taken into conside-
ration is the following. Whereas the surface area of F is π

2
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that of R is π and, moreover, in terms of curvature, whereas

Rhas a constant one, that is none, with F the curvature increa-

ses as ρ grows. In fact, to set things right, we would have
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Why exactly in this form will be explained in what follows on 
a more general basis.



TRANSFORMATIONS IN R2

Let F, G be bounded closed areas in R2 and let ( ) ( )vuvu ,,, ψϕ
be functions of two variables u,v, smooth on G, that is, with 
partial derivatives  ( ) ( ) ( ) ( )vuvvuuvuvvuu ,',,',,',,' ψψϕϕ continuous
on G. 
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Put

and ( ) [ ] GvuvuJ ∈≠ ,,0, we say that ψϕ,T

is a regular transformation of G onto F. 

( )vuJ , is called the Jacobian determinant of ψϕ,T
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CHANGE OF VARIABLES IN DOUBLE INTEGRAL

Let ( )yxf , be a function integrable over an area F and let

( ) ( )( )vuvuT ,,,:, ψϕψϕ be a regular transformation of an area G

with the J(u,v)as its Jacobian determinant. Then the function 

( ) ( )( ) ( )vuJvuvuf ,,,, ψϕ is integrable over G and
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We will show why the Jacobian determinant of the transformation 

ψϕ,T actually appears in the preceding formula. This has some-

thing to do with the way the elementary partition areas change

their form and surface area through the transformation. 



C’=[u,v]

D’=[u+c,v]

A’=[u,v+d]

B’=[u+c,v+d]

( ) ( )[ ]vuvuC ,,, ψϕ=
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C’ D’
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As the partition area A’B’C’D’ becomes infinitesimal, the area of 
the curvilinear quadrangle ABCD will tend to that of ABCD com-
posed of line segments. Let us calculate | ABCD |.
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The area of the quadrangle ABCD may be thought of as 
composed of the areas of the triangles  ACD and DBA. Now the 
area of the parallelepiped given by the vectors CDCA, is

twice that of the triangle ACD and the same holds for the tri-
angle DBA and the parallelepiped given by the vectors BDBA,

It is a well-known fact that the area of the parallelepiped given 
by the vectors CDCA, can be calculated as the absolute value 

.,CDCA

BDBA, and thus we can write
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of the determinant of a matrix whose lines are formed by the

vectors The same of course applies to the vectors



Let us now calculate the vectors BDBACDCA ,,,
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The mean value theorem tells us that there exist points I,J,K,L 
as shown in the preceding figure such that




















































 == LuLucCDKvKvdCA ',',',' ψϕψϕ and




















































 == JvJvdBDIuIucBA ',',',' ψϕψϕ



Thus we have
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With the partition area becoming infinitesimal, the originally 
different points I,J,K,L will tend to one common point Q and so 
finally we can write
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Example 1

Find the the surface area of the four petal rose shown in the 
figure below given by the equation  
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Since, with Cartesian coordinates, it would be very difficult to
find the explicit expression of y as a function of x, we will try 
using the polar coordinates. 



Indeed, substituting in (1) ϕρcos for x and ϕρsin for y yields:
ϕρρ 2cos23= or ϕρ 2cos= Since the figure has four axes

of symmetry, we only need to calculate the area of F1,, which is 
half of the eastern petal and multiply the result by 8. In this case 
the area G consists of the points  
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Example 2

Calculate the double integral dydx
M

x∫∫ where M is the inside of 

the circle .122
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Solution 1

1

Let us apply the transformation into polar coordinates. By 
substituting into the equation of the circle, we obtain 
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Solution 2

Let us apply the slightly modified polar coordinates 

ϕρϕρ sin,1cos =+= yx where the Jacobian determinant is

again  ρ and the area G is the rectangle .2,01,0 
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This example demonstrates that sometimes a subtle change in the 
system of coordinates chosen may be quite of advantage.



Example 3

Find the centre of gravity of a thin membrane whose shape is 
given by the following inequalities:  

044,0,0 22 ≤−+≥≥ yxyx

further we know that the specific mass of the membrane is 
directly proportionate to the distance from the origin with 
a constant c > 0.
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For coordinates [tx, ty] of the center of gravity of a planar area M 
with m(x,y) as the specific mass, we have
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To calculate these double integrals we will use weighted polar 
coordinates ϕρϕρ sin,cos2 == yx with the Jacobian deter-
minant ( ) .2, ρϕρ =J Then the area G will be the rectangle 
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In the last integral, we used the   t=ϕsin transformation.

Now we can calculate  
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