DOUBLE INTEGRAL OVER RECTANGULAR AREAS

Clearly, any rectangler = [a,b|x|c,d] is both ag(x) and a
w(y) figure and integration with respect to this areexis

remely simple using iterated integrals.

H f (x, y) dxdy = dei f(x, y) dyzidyf f(x, y) dx

If, moreover, we can writé(x, y) = f,(x)f,(y) we have

1] £x.y) dxdy = [ £(x)ax [ £,(y) ly
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POLAR COORDINATES

Some planar figures are better expressed using podadinates.

X=pCcosp  y=psing
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For example to calculate a double integral overfdliewing

figure
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we would have to partition the figure into thredotable to
transform the double integral>i/nto an iterated one




However, in the polar co-ordinate system, the sbguee could be
expressed as an ordinate set expressed in thegoetadinates

[0,6] such thaR<p<3 and 0<¢ =7 which isa single
rectangle
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CHANGE OF COORDINATES
Could we use this transformation when calculatmgdouble
integral of a functionf (x,y) ? In other words, could we sub-
stitute pcosp for x andpsing fory and integratef (x,Y)

with respect tdR ?The point that has to be taken into conside-

ration is the following. Whereas the surface arela %7‘[

that ofR Is 71 and, moreover, in terms of curvature, whereas
R has a constant one, that is none, Witihe curvature increa-

ses asp grows. In fact, to set things right, we would have
to write |gf(x, y)dxdy:g f (pcos¢,psin¢jp dodg

Why exactly in this form will be explained in whatlows on
a more general basis.



TRANSFORMATIONSIN R?

Let F, G be bounded closed areadRfiand letou,v,yu,v)

be functions of two variablasv, smooth orG, that is, with
partial derivativesg,'u,v), @, U,v),¢,, U, V)¢, U,V) continuous
on G.

uyv

Put J(U,V):Liull(u’v) ¢Vl[ ,
U(U’VJ w\/[U,VJ
T4 V=X, Y=LV PUV)

If T¢,¢,[Gj:F and Ju,vz0, uVLIG we say thatTmﬂ

and for evenyu,vV[LUG put

IS a regular transformation &f ontoF.

Ju,v) is called thelacobian determinantﬁ%w
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CHANGE OF VARIABLESIN DOUBLE INTEGRAL

Let f(X,y) be afunction integrable over an afeand let

T¢,¢3(¢(U,V),€U(U,V)) be a regular transformation of an af&a

with theJ(u,v)as its Jacobian determinant. Then the function

f(¢(u,v),¢(u,v))‘J(u,v)‘ IS integrable ove6 and

dudv

Ig f(xydxdy= g f {gb(u,VJ,t/J(u,va(u,VJ



We will show why the Jacobian determinant of tlamsformation
T¢,¢ actually appears in the preceding formula. Thisduase-
thing to do with the way the elementary partitioaas change

their form and surface area through the transfaonat
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C=lpuvigu,V C'=[u,v]
D=[pu+cv,¢u+cV| D'=[u+c,V]
B=g{utcv+dgutcvd) B'=[u+c,v+d]
i A'=[u,v+d]
A:_¢(u,v+d}w[u,v+dﬂ

As the partition area A’'B’C’D’ becomes infinitesimélhe area of
the curvilinear quadrangle ABCD will tend to thatABCD com-
posed of line segments. Let us calculate | ABCD |.



The area of the quadrangle ABCD may be thoughsof a
composed of the areas of the triangles ACD and D¥dw the
area of the parallelepiped given by the vec@ASCD IS

twice that of the triangle ACD and the same hogatdtie tri-
angle DBA and the parallelepiped given by the veciA BD

It is a well-known fact that the area of the paieibiped given
by the vectorsCACD can be calculated as the absolute value

of the determinant of a matrix whose lines are fuiry the
vectorsCACD. The same of course applies to the vectors

BABD and thus we can write

—

del(@ﬁi)ﬂel(ﬁ BD
2

‘ABCq:




Let us now calculate the vectotsACD,BABD
ﬁ:[¢(u,v+dj—¢(u,v),¢ﬂ[u,v+d}—c,0(u, )J

CD={pu+cV-guvigl+cvi-¢uv
?A:(¢[u,v+d]—¢(u +e,v+d)g(uv+d)—g(u +c,v+dj}

WD:@(U+c,v)—¢(u+c,v+d},w(u+c,v)—z/1(u+c,v+d]}
The mean value theorem tells us that there existsipJ,K,L
as shown in the preceding figure such that

Gy K 1 K S~ L4 L) and
BA=CAy (14!, BD=d(dy[ 3 )y (J)



Thus we have

dull] @l
. 3 Py Wyl .
With the partition area becoming infinitesimal, treginally
different pointd,J,K,L will tend to one common poii@ and so
finally we can write

9,(0) wv-(Qi%d
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Example 1

Find the the surface area of the four petal rosgahn the
figure below given by the equation

[X2+ y2}3/2 —x2—y2 (1)

08 -06 04 -0 2 04 0F 08

Since, with Cartesian coordinates, it would be \@ffycult to
find the explicit expression gfas a function ok, we will try
using the polar coordinates.



Indeed, substituting in (Jgcosg for xand psing fory yields:
03=p2coLp Or p=cos2¢ Since the figure has four axes

of symmetry, we only need to calculate the arefla, ofwhich is
half of the eastern petal and multiply the resulBbin this case
the areas consists of the point[p,¢]D{O;L}><{%} The Jacobian

determinant for the polar coordinatesgsand so we can write
‘F]J=8gpdp The double integral can be transformed into an ite-

rated one as follows

;7/4 CoLp ;7/4- 2—c052¢ %
[[ododg= [dg [pdpo= | L d,o:% [ co2pdg
G 0 0 ol 2o 0

Using the formu|aco§2x:1+c‘2354x we finally get ‘F]J:ﬂ



Example 2
Calculate the double integrzilﬂ[XdXdy whereM is the inside of

the circle(x—1j2+ y2=1.

m

_

Let us apply the transformation into polar coortisaBy
substituting into the equation of the circle, weanip

(pcos¢+1j2+(psin¢j =1 and thus p=2cos¢

Solution 1




"2 2cosp o /2
dexdy: j dg j pzcoa;bdp—_ j cos pdg =

L, Ty O _/2

7[[ [1+g0052¢+1cos4¢] b=

72

W}/% +£ {sm2¢}/2/+ [S|n4¢}/2/2—7-[+0+0 -
Solution 2

Let us apply the slightly modified polar coordirate

X=pcosp+l, y=psing where the Jacobian determinant is

againo and the are& is the rectangled.1x|0,272,
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dg =

2r 1 2 1
&de{jy: jd¢jpzcos¢+pdp: ﬂp?’%oaﬁ +
O O 0 0 0
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1 1
—Cosp+—dg =0+m=rm
J3e0 5%

This example demonstrates that sometimes a sui#lege in the
system of coordinates chosen may be quite of adgant



Example 3

Find the centre of gravity of a thin membrane whels@pe is
given by the following inequalities:

Xx=20,y=0 x*+4y*-4<0

further we know that the specific mass of the memeris
directly proportionate to the distance from theworiwith
a constant > 0.




For coordinatest], t,] of the center of gravity of a planar afda
with m(x,y) as the specific mass, we have
[[xm(x,y) dxdy [y ml(x, y) dxdy

t, =" t, =4

© [[miy)dxdy T 7 [[m(x,y) dxdy
M M

To calculate these double integrals we will usegivied polar
coordinatesX = 20C0sp, Yy = psing with the Jacobian deter-

minantJ(p, ¢) = 20. Then the are will be the rectangle
[03]x[0,72/2]

¢A 1
[[clx? +y?) dxdy =c[(Bcos? ¢ +2sin® ¢) dg [ pdp =

m 0
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[[clx +y?xdxdy = c [(16cos’ ¢ + 4sin? ¢ ) d¢ [ p* dp =
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In the last integral, we used th&ing =t transformation.

36c
Now we can calculate e 144

_ 15 _
t. = = ~ 183346
* bemr 257 .
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7 1
[[clx +y2)y dxdy=c [ (Bcos gsing + 2sin’ ¢) dg [ p* do =

M 0

1 3L 37}
:Ejgtz+2(1—t2):§ v +§ 1_t_ _lx
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And so .
¢ =15 144 561115
Y berr 757
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