EXAMPLE
Calculatej (9x? — 2y +3) dx + (- 2x - 4) dy

C

WhereC is

1. The part of he circlg?+ y?= 1that lies in the first
guadrant oriented anti-clockwise

2. The line segment between the points [1,0] ard [O,

[0.1]

O [1,0]



1. xe+y2=1

7
j(9x2 —2y+3) dx+(-2x—4)dy = j—9co§tsint+25in2t —3sint —2cos't - 4cost dt =
C 0
" 1 72

= J—9co§tsint — 2c0s2t — 3sint — 4cost dt :—9jt2 dt —ZjCOSZI dt—-3-4=
0 0

0

BT
= _9|:3:| -7=-10

0

2.y=1-x
—J’(QX2 —2y+3)dx+(—2x—4)dy:-‘1‘(9x2 ~2(1- )+ 3)dx + (= 2x - 4)(- dx) =

C 0

= —j. OX* +4xX+5dx = —[3x3 +2X° + 5x]t =-10
0



The identical results of the above calculationsrareoincidence.

The reason is that the vector components

(fi(xy), fo(xy)) = (K- 2y + 3,-X - 4)

are the partial derivatives byandy respectively of the function

F (Xy) = 33— 2y + 3x — 4y.



Let f (xy) = (f,(x)y), f,(X)y)) be a vector field witly,(X)y), f5(Xy)
continuous in a planar aréacontaining a regular curv@ given by
the parametric equations

x=g(t), y = y(y), t[a,b]

oriented in correspondence with these parametoateans. LetA
denote the pointj(a),P(a)] andB the point p(b),(b)].

A function F(x,y) in A such that

O F(x,y) has continuous first partial derivatives

3 )= Pl fby)= g Flxy)

IS called thepotential of the vector field(x,y)




Let the potentiaF (x,y) of f(x,y) exist and calculate the line
integral of f(x,y) alondC:

[ 1,06 y) o+ £,(x, y)y = [ £#0.000 €)+ LEOL0W 0

C

- J[ & FB0.0(0) )t =FROW O, =

This means that the result only depends on the valbéxg)
at A andB and is independent of the choice of cuGre




Clearly, a similar result can be obtained for 3D curves: If

(x,y,2) is a potential of f (x,y,Zz) so that

9
W y.2)= Flxy.2)

G
B&Md=@F®%ﬂ

G
fx y.2)= 2 F(xy.2)

then

j f.(x,y,z)dx+ f,(x,y,z)dy+ f,(x,y,z)dz=F(B)- F(B)

C

for every curveC going fromA to B.



Let F(X,y,2) andG(X,y,2) be two potentials of(x,y,2).

Then

9 9

W yz)=2 Flxyz) filxy.z)=_ G(xy.2)

fz(x,y,2)=£,F(x,y,Z) fz(x,y,z):jyca(x,y,a
_0 0

fo(%, Y, Z)—EF(X, y.z)  f,(xy, Z)=§G(x, Y, 2)

.

&(F(X, y,2)=G(x,y,2))=0

i(F(X, y,z)-G(x,y,2))=0 j>\ G(x,y,2=F(x,y,2) + const

oy

S (F(4y.2)~G{xy.2) =0



Given the function$§,(x,y) andf,(x,y), how can we know that a

functionF (Xx,y) exists such that

06y)= 5 Fooy) fxy)=5) Flxy)




2 2

0 0
We have— f.(x,y)= F(X, and— f,(x,y)=
-y (%, y) Oy (% y) " (%) Oy

F(xy)

From what we know abol(x,y), it follows that

92 92
F(xy)=—— F(x,
Oy (x.y) Oy (%)

Thus we can conclude that

0 0
@ fl(X’ y) = a_X fz (X’ y)

IS a condition necessafyr the existence of the functidt{x,y).

It can be proved that this condition is also sufficient.




In the event of a 3D curve and a functke(x,y,z), if
0 0 0

f=—F f =—F f,=—F

) ° oy > 0z
then clearly
of, _ 9°F of, _ 9°F of, 9%
oy Oxdy ox  dyox OX  9Z0X
afl _ aZF afZ _ aZF af3 _ aZF

9z Ox9z 0z  0yoz dy 0z0y



This means that

are conditions necessary for the existence of theibmE(x,y).

or

Again, it can be proved that they are also sufficient.

Conditions (2) can also be expressed using the follovangdl
calculation.



Suppose that, next to the vector
f(xy,2)=f.(x y,2)i + f,(x y,2) j + f,(x y, 2)k

we also have a formal vector

0=9i+97+9¢
oX o0y 0z

This vector is also called thmabla operator.

Let us calculate the vector product

f(x,y,z)x0



i ] K

= 0 0 O
fix vy, z)x= =

xy.2) oX o0y 0z

fl f2 f3

_[of; _of, i+(afl ‘af?’ﬁ N of, of, K
oy 0z 0z O0X oxX oy
Thus the conditions (2) can be written as

—

f(x,y,z)x0=0

whereQ is the zero vector.



The vector fieldf (x,y,z)x0=0 is called thition or curl of

the vector fied f(x,y,2)

If the rotation of a vector field is the zero vector in arm#&ghe

vector field Is said to berotational or conservative .

The line integral of a vector field is independent ofc¢hese along
which the endpoint is reached from the starting pointtgxdc¢he

vector field iIs irrotational.




To find a potential to functionfs(x,y,2), f5(X\y,2), f3(Xy,2), first

we must verify that

of, _of, of _of, of, of,

< -0 or -
f(x,y,z)x0=0 oy 0z 0z Ox Ox oy

and then perform the following calculations:

F(x,y,2)= j f,(x,y,z)dx+G(y,z)

0 0 0 _
2 6(n2)= 2 F(x.2-[{ 2 02l ac= Rl



G(y,2) = [F,(y,2)dy +H(2)

H(z)= j F.(z)dz+const

F(x,,2) :j f.(x, Y, z)dx+j F,(y, z)dy+j F.(z)dz+ const




Example

Find a potential to the vector field
f(xy,2)=(3Cyz-2y%)i +(x*z-6xy? +2y2?) ] + (Cy + 2y )k
Solution

We have

aiz(x?’z—6xy2 +2yz?)= X +4yz::y(><‘°’y +2y°2)

P 0
@(3x2yz— 2y°)=3x*z- 6y’ = a_x(XBZ‘ 6xy° +2y2’)



F(x,y,2)= j3x2yz— 2y*dx = x’yz-2xy> +G(y, 2)

:yG(y, z)=Xz-6xy° +2yz* - (x3z— 6xy2) = 2y7°

G(y,z)=y?Z* +H(2)
F(x,y,z)=xyz-2xy’ + y°z* + H(2)

F(x,y,z)=x’yz-2xy® + y°z* + const




GREEN'S THEOREM

Let f(x,y) =f,(x,y) | + f5(X,y) ] be a vector field in a planar arkh

with continuous first order partial derivatives andUdte a closed

regular curve iM oriented anticlockwise. L&t denote the planar

area bounded by. Then

—_—
=

f(x y)i + (% )]







@> From the picture it is clear that the line integralsn all
the rectangles of the grid covering the akesdd up to the

line integral round the thick contour coveriAgince the
line integrals round the inner sides of the rectangtd aye

always calculated twice — each time with a different.sign

We will now calculate the line integral round the yellow
rectangleR in the picture. The line integrals round other
rectangles of the grid coverifgwould be calculated in the

same way.



opposite
orientation

\\l x:Lyzmchby2Z)//

Xx=a,y=t

tOfc.d] R

v >

x=t,y=c,t0|a,b]

opposite
orientation




| :§ f.(x,y)dx+f,(x,y)dy=1,+1,+1,+1, where
R

l,

= T f,(x,c)dx

b d

|3:__[ fl(X,d)dX |4:_J. fz(av Y)dy

L= [ ((x,0) - f(x ) [ (£,(0.y)- @, )y



b

(f,(0,y) - ,(a, y))ay - [ (£,(x,d) - f,(x,c))dx

a

I R

0O e O

Using the Lagrange theorem for both integrals, we cam writ

d b

== 2 (8.9 oy (-0 3 ey

C

wherec< 5, <danca<a, <b

Finally, using the mean value theorem for integrals, we get

0= (o-a)a -0 .(8.4,)-(d-cb-a) ] t(a.a,)

wherec< S, <danca<a, <b



If we calculatd,for every rectangle of the grid coveriAgand

add them up, we get, on the left-hand side of the equat®hingh
integral of the vector field,(x,y) i + f,(x,y) ] round the thick con-
tour in the picture (see the note) and, on the right-halegd an in-
tegral sum lying between the lower and upper integral stitieo

double integral
0 0
-U(ax f,(xy)- dy f (%, Y)) dxay

Thus, when the norm of the grid tends to zero, this equation tend

to what Green’s theorem says.



EXAMPLE

Calculate the area of the astroid given by the equations

x=acost, y=asin’t,t1[0.27]

For comparison, the circumscribed red circle has a radiais



By Green’s theorem, we have

Hldxdyzlif—ydx+ xdy
A 2L
2n

fﬁ— ydx+ xdy = j— asin’ta3cos t(-sint)+acos ta3sin’t cost dt =

L 0

27 271
=3a° jsin4 tcost+costsin’tdt =3a° J'sin2 tcos tdt =
0 0

2 27 2 2nq4 2
4 4 2 4

0 0
2

Thus the area of the astroid is:,g];i



