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Where C is

1. The part of he circle x2 + y2 = 1that lies in the first 
quadrant oriented anti-clockwise

2. The line segment between the points [1,0] and [0,1]
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The identical results of the above calculations are no coincidence. 

The reason is that the vector components

(f1(x,y),  f2(x,y)) = (9x2 – 2y + 3,–2x – 4)

are the partial derivatives by x and y respectively of the function

F (x,y) = 3x3 – 2xy + 3x – 4y.  



Let f (x,y) = ( f1(x,y),  f2(x,y)) be a vector field with f1(x,y),  f2(x,y) 
continuous in a planar  area A containing a regular curve C given by 
the parametric equations

x = ϕ(t), y = ψ(t),  t∈[a,b]

oriented in correspondence with these parametric equations. Let A
denote the point [ϕ(a),ψ(a)] and B the point [ϕ(b),ψ(b)]. 

A function F(x,y) in A such that 

� F(x,y) has continuous first partial derivatives
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is called the potential of the vector field f(x,y) 



Let the potential F (x,y) of  exist and calculate the line 

integral of along C:
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This means that the result only depends on the value of F(x,y) 
at A and B and is independent of the choice of curveC. 
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Clearly, a similar result can be obtained for 3D curves: If F

(x,y,z) is a potential of so that 
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for every curve C going fromA to B.
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Let F(x,y,z) and G(x,y,z) be two potentials of  f(x,y,z). 
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Given the functions f1(x,y) and f2(x,y), how can we know that a 

function F (x,y) exists such that
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From what we know about F(x,y), it follows that 
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is a condition necessaryfor the existence of the function F(x,y).

It can be proved that this condition is also sufficient.



In the event of a 3D curve and a function F(x,y,z), if
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This means that
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are conditions necessary for the existence of the function F(x,y).

Again, it can be proved that they are also sufficient.

Conditions (2) can also be expressed using the following formal
calculation. 

or

000 123123 =
∂
∂−

∂
∂=

∂
∂−

∂
∂=

∂
∂−

∂
∂

y

f

x

f

x

f

z

f

z

f

y

f

(1)

(2)



Suppose that, next to the vector 
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we also have a formal vector
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This vector is also called the nabla operator.

Let us calculate the vector product
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Thus the conditions (2) can be written as 
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where  is the zero vector.0



( ) 0,, =∇×zyxfThe vector field                             is called the rotation or curl of 

the vector field

If the rotation of a vector field is the zero vector in an area A, the 

vector field is said to be irrotational or conservative in A.

The line integral of a vector field is independent of the curve along 

which the endpoint is reached from the starting point exactly if the 

vector field is irrotational.
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To find a potential to functions f1(x,y,z),  f2(x,y,z),  f3(x,y,z), first  

we must verify that
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and then perform the following calculations:
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Example

Find a potential to the vector field
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GREEN’S THEOREM

Let f(x,y) = f1(x,y) i + f2(x,y) j be a vector field in a planar area M

with continuous first order partial derivatives and let L be a closed 

regular curve in M oriented anticlockwise. Let A denote the planar 

area bounded by L. Then
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From the picture it is clear that the line integrals round all 

the rectangles of the grid covering the area A add up to the 

line integral round the thick contour covering A since the 

line integrals round the inner sides of the rectangle grid are 

always calculated twice – each time with a different sign.

We will now calculate the line integral round the yellow 

rectangle R in the picture. The line integrals round other 

rectangles of the grid covering A would be calculated in the 

same way. 
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Using the Lagrange theorem for both integrals, we can write 
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If we calculate IR for every rectangle of the grid covering A and 

add them up, we get, on the left-hand side of the equation, the line 

integral of the vector field  f1(x,y) i + f2(x,y) j round the thick con-

tour in the picture (see the note) and, on the right-hand side, an in-

tegral sum lying between the lower and upper integral sums of the 

double integral 
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Thus, when the norm of the grid tends to zero, this equation tends 

to what Green’s theorem says.



EXAMPLE

Calculate the area of the astroid given by the equations

[ ]π2,0,sin,cos 33 ∈== ttaytax

For comparison, the circumscribed red circle has a radius of a



By Green’s theorem, we have
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