
PARAMETRIC EQUATIONS OF A 3D SURFACE
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SIMPLE 3D-SURFACES

M is a planar area bounded by a closed regular curve ∂M

ϕ(u,v), ψ(u,v), χ(u,v) are one-to-one mappings of M into R3

ϕ(u,v), ψ(u,v), χ(u,v) have continuous first partial derivatives 
on M 

S={ [ x,y,z] | x = ϕ(u,v),  y = ψ(u,v),  z = χ(u,v) }

a simple 3D-surface

We will call the set 



A 3D-surface S is closed if it divides R3 into at least two 
contiguous parts that cannot be connected by a continuous 
line without crossing S. 

SPHERE TORUS
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If we require the mappings ϕ(u,v), ψ(u,v), χ(u,v) to be one-to-

one only on M – ∂M, that is, not including the boundary, the 

surfaces may also be closed. For example, with the sphere in 

the previous picture, 

2π

π

0
u

v

The red segment is all taken
to the north pole 

The blue segment is all taken
to the south pole

The green sides are taken
to the Greenwich meridian



Tangent vectors
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Normal
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AREA OF 3D-SURFACES

To define the area of a 3D surface we could try to proceed in a 

way similar to defining the length of a curve. For a curve, we 

took all polygons inscribed into it and defined the length as the 

lub of the lengths of all such polygons. This could be achieved 

by letting the norm of the polygons tend to zero.
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For a 3D-surface S, we could similarly take a triangulation 

consisting of triangles inscribed in Sand let its norm, that is, 

the area of the largest triangle, tend to zero. The limit of the

sum of the inscribed triangles would then be taken for the 

area of S.
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Surprisingly, this is not possible even for such relatively simple 
surfaces as a cylindrical surface. The following example due to 
Schwarz illustrates this point 
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The area Sof the cylinder surface: 

=+






 −=
∞→
∞→ 2

22
2 cos1sin2lim

m

h

n
r

n
mnr

n
m

ππ

=+






 −=
∞→
∞→

2
2

22 cos1sin2lim h
n

mr
n

nr
n
m

ππ

2
2

222
2

22 cos12limcos1
sin

2lim h
n

mrrh
n

mr

n

nr
n
m

n
m

+






 −=+






 −=
∞→
∞→

∞→
∞→

πππ
π

π

π

==
∞→
∞→

ABVmnS
n
m

2lim

However, the last limit does not exist.
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for some constant q. This means that, for large values of n, we 

can replace m by qn2 in the limit:
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This means that
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and so the result depends on q. Thus the surface cannot be 

determined using this method. 



The reason why this method fails when calculating surface 

areas whereas it is successful in calculating the length of a 

curve is the following. As can be seen in the picture below, 

with the length of the polygon segments becoming smaller, 

their direction tends to that of the appropriate tangent vectors:
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However, in Schwartz’s 
example, the unit normals of 
the approximating triangles 
do not tend to those of the 
cylindrical surface. For 
example for the triangle on 
the left, the coordinates of 
the unit normal are:  
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which is perpendicular to it.



To calculate the area of a surface we will use the concept of a 
tangent plane.
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the area of the piece will be approximated by that of the “peeling off”
red tile made from the tangent plane
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The area |S| of a surface S defined by the parametric equations

can be calculated using the following formula
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For a 3D-surface Sexpressed by the explicit function 
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we get the following formula
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Example

Calculate the area of a sphere with a radius of r.

We will choose a sphere with the centre at [0,0,0], 

which has the parametric equations
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Clearly, for reasons of symmetry, we can consider an 

M’ : [0,π/2]×[0,π/2] multiplying the result by 8.
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Orientating a surface

To orientate a surface means to say which side is the „upper one“. 

We do this by orienting the normals. This then makes it possible to 

deter- mine the orientation of closed curves. (right-handed and left-

handed threads).   
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For the definition of orientation to be correct, the following 

condition must be true for any closed curve C in S:

After moving the normal continuously along C and 

returning to the starting point P, it must still have the same 

direction. 
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Orientable surfaces

3D-surfaces for which condition (*) is satisfied are called 
orientable.

There are 3D surfaces that do not meet this condition and are not 
orientable.

An example of a non-orientable 3D-surface is the Möbius band
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