GRADIENT OF A SCALAR FIELD

We will denote byf (M) a real function of a poiril in an areaA.
If Alis two dimensional, then

f(M)=f(xy)
and, ifAi1s a 3-D area, then

f(M)=f(x,y,2)

We will call f (M) ascalar field defined inA.




Letf(M) =f (x,y). Consider an equatid(M) = c. The curve defined

by this equation is calledlavel line (contour line, height line) of

the scalar field(M). For different >\//aluesl, C,, C3, ... WE May get a

set of level lines.
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Similarly, if Ais a 3-D area, the equatib(M) = c defines a

surface called bevel surface (contour surface). Again, for

different values o€, we will obtain a set of level surfaces.
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Directional derivative

Let F(M) be a 3-D scalar field and let us construct ae/dhat
characterizes the rate of changd-@¥1) at a pointM in a

direction given by the vectar= (cosa,cosf,cosy) o
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OF _ jim F(Mu)=F(M)
aé M; - M MMl

Let M = [Xx,y,Z] andM =[x+AX, y+Ay, z+Az], then
F(M,)-F(M)=F(x+Ax,y+Ay,z+Az)-F(x,y,2)=

OF  OF  OF
=dF(X,y,Z)+0po=—AX+—Ay + A7 =
(x,y,2)+ 0 W oy y ™

_oF

oF oF
pCosq +-— pCosf+-—_— pcosy +Jp
OX oy 0z

where p=MM, and 0 -0 as p -0



This gives us

oF . (OF oF oF
— =lim| —cosa +—cosff+—cosy+o
oe r,-0 OX oy 0z

However, the first three terms of the limit do not depend
onpandd -0 as p-0 so that

oF _OF oF oF
=—C0Sa +—Ccosfs+—cosy
oe OX oy 0z




oF
Clearly, ge assumes its greatest value for

- 0F: oF - OF+
e=—Ii+—]+—Kk
ox oy 0z

This vector is called thgradient of F denoted by

oF . OF - OF -
radF(x,y,z)=—1+— |+ —K
gradF(x, y, z) o Fay 1t oz

or, using the Hamiltonian operatér (nablz):

grackF =LF



Thus grad- points in the direction of the steepest increade in
or the steepest slope I6f Geometrically, for &, gradF at a
pointM is parallel the unit normal & of the level surface
F(x,y,2)=c

1% x gradF F(x,y,2)=c




Vector field, vector lines

Let a vector field (M) be given in a 3-D areQ, that is,
eachM 0 Q is assigned the vector

f(M)=f.(xy 2)i + f,(x y,2) j + fo(x, v, 2)k

| >4

A vector linel of the vector fieldf (M) is defined as a line

with the property that the tangent vectof & any poinL
of | is equal tof (L)
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This means that if we denote 8% = dxi +dy j + dzk

the tangent vector of then, at each poii, the following

eqguations hold dx — dy _ dz

fL(M) (M) f,(M)

This yields two differential equations defining the veditmes

for f(M) . This system has a unique solutiofy iff,, f,and
their first order partial derivatives are continuous not
vanishing at the same point. Then, through elsich 2
exactly one vector line passes.

Note: Similarly, for a two-dimensional vector field we can

get the differential equation 9 = @

(M) f,(M)




Example

Find the vector line for the vector fiefldM )= xi —y j — 2zk
passing through the poimM =[1, -1, 2].

Solution

We get the following system of differential equations
dx _dy dz dx _ dy dy_dz
X -y =2z X y 'y 2z

this clearly has a solution
Xy=c,, Y°=c,z oOr,using parametric equations,

X:Tqy:Lz:t, t£-1
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Since the resulting vector line should pass through M, we get

ol
c=-1c, =

x:—:t—L,y:t,z:ZtZ, t £ -1




Example

Find the vector lines of a planar flow of fluid characed by

—_—

the field of velocitied (M) = xyi +2x(x=1) ]

The differential equation defining the vector lines is

d__ dy
xy  2x(x-1)

Integrating this differential equation yields

1
2[(x-1)dx=—[ydy= x2 —2x=-"y? +
J(x=D)dx=-[ydy=x*-2x=="y* +c,

2

and thus (x-1)° +yE =c(c>0)






VECTOR FIELD

We will denote byf (M) a real vector function of a pdihtn an

areaA. If Ais two dimensional, thef(M )= f,(x, y)i + ,(x, y)]

and, ifAis a 3-D region, then

f(M)=f,(xy)i+ f,(x,y)j + f5(x y)k

We will call f(M) avector fieldin A.




Flux through a surface

Let o be a simple (closed) surface ahM ) a 3-D vector

field. The surface integral

”?(M )dé = J:[ fl(x’ Y Z) dydz + f2 (X, Y, Z) dxdz + f3(X, Y, z) dxdy

is called the flux of the vector field (M) through surfaze
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Divergence of a vector field

vectorfield T(x,y,2) , s ///7+// closed 3-D are¥
//’//// /,// with Sas border
pu— 0 S= 9V
7 pARN Y ‘
— \‘»«\\ T
— Xy &T\ an internal poiniM
SRRN
H?(x, y,z)dS

|V| is the volume oV

D is the flux of f(x,y,z) throug®V per unit volume



Let us shrinkV/ to M, that is, the are becomes a point and see
whatD does. If f(x,y,z) has continuous partial derivatives, the

below limit exists, and we can write:

H?(x, y,z)dS
— I — | ov
D(M)—Jm D = lim v

If we view f(x,y, z) as the velocity of a fluid flowD(M)

represents the rate of fluid flow frol.
=for D(M) > 0,M is a source of fluid,;
*for D(M) < 0,M is a sink.

*if D(M) = 0, then no fluid issues from.



If we perform the above process for evityn the region in
which the vector fieldf (x,y, z) is defined, we assign to the

vector field f(x,y,z) a scalar field(x,y,z) = D(M).

This scalar field is called ttaivergenceof f(x,y,z) .

We use the following notation:

D(M) =div f(x,y, z)=div (fl(x, y,z)i + T,(x,y,2)] + f,(x,y, Z)R)



It can be proved that, in Cartesian coordinateshawe

— 0 0 0
div f(x,y,z) = a_X fl(x’ Y Z)"’& fZ(X, Y Z)+5_Z f3(X, Y, Z)

Or, using the Hamiltonian or nabla operator

we can write

div f(x,y,z)=0[f(x,,2)




Solenoidal vector field

If div div f (M) =0 at everyM in a 3D regiom, we say that
the field T (X, ¥.2) is solenoidal is.

If a vector fieldf (x,y,z) is solenoidal in a regidq then it has

neither sources nor sinksAn



Gauss's - Ostrogradski's theorem

Let us take a closed surfagehat contains a 3D regiohwhere
a vector fieldf (x,y,2) is defined and "agul-the divergence of

f(x,y,z) withirv, that is, calculate the triple integral
j‘Hdiv f (x,y,z)dxdydz
\%

The divergence being the rate of flow through mooft3D
space, we see that this integral represents whas flhrough
o as the boundary of. However this is exactly the flux of

f(xy,2) throughb

'[ j f(x,y,2z)dS

g



If a vector functionf (x,y,z) has continuous partial derives

In a 3D regiornV bounded by a finite boundagy we can write

ﬁ?(x, y,z)dS= _[”div f(x,y,z)dxdydz

g

where the surface on the left-hand side of the temues

oriented so that the normals point outwards.

The most general form of this formula was first proved by
Mikhail Vasilevich Ostrogradsky in 1828.



Example

Calculate the volume of an ar€@®ounded by a closed
surfaceo given by the parametric equations

X = ¢(u,v), y = )((u,v), Z= )((u,v), [u,v] (1M

Let us define a vector fieldf (x,y,z) = xi +yj + zk

By Gauss's-Ostrogradsky's theorem, we have

{:}?(x, y,2)dS = HJdiv f(x,y,z)dxdydz :”j?,dxdydz
;nd thus V V

V|=2[[ Ag(u.v)+ B (uv)+ Cx o) ucy



whereA, B, C are the coordinates of a normalxothat is,

wlu X'u
wlv X'V

Xu @,
X, @,

¢lu wlu
¢, W,
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B:|




For example, iB is a ball of radius, we have
X =T cosusinv, y =rsinusinv, Z=r cosv, [u,v] [ [O,Zn]x [O, n]

And so

1 . . . .
\B\ :gﬂ—r%osz usinv-r3sin‘usinv-r3sinvcog vdudv =
M

47T

377 3
o Isinvdvzzi[—cosv]g =
S 3

3

:%_[Aj—r?’sinvdudv:



The curl of a vector field

vector field f (x, y, z)

For a plane determined by its unit normal,  containing a closed
curvel with a fixed pointM inside the area bounded by, define

the quantity §?(x, y,z)ds |A| is the surface
Clno,I,M)=1 area ofA

A




If f(x,y,z) has continuous partial derivas, we can calculate
C(n,,M)= lim c(n,,I,M)

andC (n, ,M) does not depend on the choicé ahd the

way it shrinks tdMVl. It is only determined by the poiit

and the direction of,

It can further be proved that there exists a usiakevectoic(M)

such that(M)(n, =C(n,,M)

for every normaln, determining the plame



Using the above method we can assign a vetkd) to every
pointM in the 3D-region in which the vector field satisfige
assumptions (continuous partial derivatives). lmeotvords, we
have defined to the original vector fiefdx,y,z)  a newtoec
field c(x,y,z)

This vector field is called the curl off (x,y,z) and dencigd

curl T(x,y,2z) orrot f(x,y,2z)

curl f(x,y,2) = of, of, i+(6f3 —afljﬂ of, of, K
0z oy 0X 0z oy O0X




The last formula can be written using the followfogmal

determinant

| ] K

. 0 0 0

curl f(x,y,2)= ~ Fy e
Lk y.2) f(xy.2) fi(xy2)

or curl f(x,y,z)=0x f(x,y,2)




Suppose that the vector fielti(x,y,z)  represents a flowud fl
Think of a very small turbine on a shaft positioméd point\.
Through the fluid flow, the turbine will turn atspeedks.

Let us move the shaft changing its direction whakeving the
turbine at the pointl. In a certain directio(M ) , the spegdf
the turbine will reach its maximum. ThefM ) s cledHg curl

of f(x,y,2) atM.
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Irrotational vector field

it curl f(x,y,z)=0 in a 3D-region A, we say that the field

f(x,y,2) isirrotational .

Recall thatf (x,y,z) has to be irrotational if line integraf
the vector field are to be independent of the dilwang which

the integral is calculated being only functionghad initial

and final points.



Every continuously differentiable vector functidifM ) efitied
In a regionA (subject to mild restrictions) can be expressed as
a sum of two vector functiong(M) and(M)  such that

g(M) is solenoidal anch(M) is irrotational.

The possibility of such decomposition greatly sirfings

the study of many velocity and force fields ocaugrin physics.



Stokes formula

Let a vector fieldf (X, ¥,z) be defined in a 3D regidnvith

continuous first partial derivatives. Let a simpl@ surfaceo be

given inA bounded by a closed regular cutv@&hen the flux of
the curl of f(X,y,2) throughs equals the line integral of .

f(x,y,z) alond Formally

chrl?(x, y,z)dS = §T(x, y,z)ds

o I




Example

Use the Stokes formula to calculate the secondligpe
integral of the vector fieldf (X, y,z)=yi +zj + xk

along the circleC x>+ y>=r2,

—_—

We havecurlf =—-i —j -k
Consider the semi-sphege

X =rcosusinv, y =rsinusinv, Z=r cosv, [u,v] 0 [O,2n]><[0, 7l /2]



Since, clearlyC is the boundary of, we can use the Stokes
formula:

| :§ydx+zdy+ Xdz:“—dydz—dxdz—dxdy:
C S

2 l2
=~{du [(A+B+C)dv
0 0

where A=-r?cosusin’v, B =-r?sinusin’v, C = -r?sinvcosv

2 ml2
| :rzjdu j(cosusin2v+sinusin2v+sinvcosv)dv
0

| = {J'cosu duﬂfs,ln vdv+jsmu duﬂfsm vdv+2ﬂnfsmvcosvdv}



Since, cIearIstinu du :jcosu du=0, we have

Tl/2 7Tl2

| =277 jsmvcosvdv T _[stvdv T —[—cos2v]”’2 7T’



