
GRADIENT OF A SCALAR FIELD

We will denote by f (M) a real function of a point M in an area A. 
If A is two dimensional, then

( ) ( )yxfMf ,=

and, if A is a 3-D area, then

( ) ( )zyxfMf ,,=

We will call f (M) a scalar field defined in A. 



Let f(M) = f (x,y). Consider an equation f(M) = c. The curve defined 

by this equation is called a level line (contour line, height line) of 

the scalar field f(M). For different values c1, c2, c3, ... we may get a 

set of level lines. 
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Similarly, if A is a 3-D area, the equation f (M) = c defines a 

surface called a level surface (contour surface). Again, for 

different values of c, we will obtain a set of level surfaces. 
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Directional derivative

Let F(M) be a 3-D scalar field and let us construct a value that 

characterizes the rate of change of F(M) at a point M in a 

direction given by the vector
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Let M = [x,y,z] and M1=[x+∆x, y+∆y, z+∆z ], then
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This gives us
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However, the first three  terms of the limit do not depend 
on ρ and                                    so that0as0 →→ ρδ
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Clearly, e
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This vector is called the gradient of F denoted by 

or, using the Hamiltonian operator ( ) :nabla∇
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Thus grad F points in the direction of the steepest increase in F 

or the steepest slope ofF. Geometrically, for a c, grad F at a 

point M is parallel the unit normal at M of the level surface 
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Vector field, vector lines

Let a vector field f (M) be given in a 3-D area ΩΩΩΩ, that is, 

each Ω∈M is assigned the vector

( ) ( ) ( ) ( )kzyxfjzyxfizyxfMf ,,,,,, 321 ++=

A vector line l of the vector field is defined as a line 

with the property that the tangent vector to l at any point L

of l is equal to .  
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This means that if we denote by kdzjdyidxSd ++=
the tangent vector of l, then, at each point M, the following 

equations hold ( ) ( ) ( )Mf
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This yields two differential equations defining the vector lines

for           . This system has a unique solution if  f1,  f2,  f3 and 

their first order partial derivatives are continuous not 

vanishing at the same point. Then, through each                ,

exactly one vector line passes.
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Note: Similarly, for a two-dimensional vector field we can 

get the differential equation  
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Example

Find the vector line for the vector field( ) kji zyxMf 2−−=
passing through the point M = [1, -1, 2].
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Solution

We get the following system of differential equations 
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this clearly has a solution 
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Since the resulting vector line should pass through M, we get 
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Example

Find the vector lines of a planar flow of fluid characterized by

the field of velocities

The differential equation defining the vector lines is 

( )12 −
−=

xx

dy

xy

dx

integrating this differential equation yields

( ) 1
22

2
1

212 cyxxdyydxx +−=−⇒−=−∫ ∫

and thus ( ) ( )0
2

1
2

2 >=+− cc
y

x

( ) ( ) jxxixyMf 12 −+=



c=1

c=2

c=3

c=4y

x



VECTOR FIELD

We will denote by a real vector function of a point M in an 

area A. If A is two dimensional, then( ) ( ) ( ) jyxfiyxfMf ,, 21 +=

and, if A is a 3-D region, then

We will call a vector field in A. 
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Flux through a surface

Let σ be a simple (closed) surface and a 3-D vector 

field. The surface integral 

( ) ( ) ( ) ( )∫∫∫∫ ++=
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is called the flux of the vector field through surface σ.
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Divergence of a vector field

V

closed 3-D area V
with S as border

S = ∂V

M
an internal point M
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|V| is the volume of V

D is the flux of through ∂V per unit volume

V

( )zyxf ,,



Let us shrink V to M, that is, the area V becomes a point and see 

what D does. If has continuous partial derivatives, the 

below limit exists, and we can write: 

( )
( )

V

Sdzyxf

DMD V

MVMV

∫∫
∂

→→
==

,,

limlim

If we view as the velocity of a fluid flow, D(M)  

represents the rate of fluid flow from M.

�for D(M) > 0, M is a source of fluid;

�for D(M) < 0,M is a sink.

�if D(M) = 0, then no fluid issues from M.
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If we perform the above process for every M in the region in 

which the vector field is defined, we assign to the 

vector field a scalar field D(x,y,z) = D(M).

This scalar field is called the divergenceof .

We use the following notation:     
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It can be proved that, in Cartesian coordinates, we have
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Or, using the Hamiltonian or nabla operator
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Solenoidal vector field

If div at every M in a 3D region A, we say that 

the field is solenoidal in A.

If a vector field is solenoidal in a region A, then it has 

neither sources nor sinks in A.

( ) 0div =Mf

( )zyxf ,,

( )zyxf ,,



Gauss's - Ostrogradski's theorem

Let us take a closed surface σ that contains a 3D region V where 

a vector field                 is defined and "add-up" the divergence of   

.               within V, that is, calculate the triple integral  

( )∫∫∫
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The divergence being the rate of flow through points of 3D 

space, we see that this integral represents what flows through 

 σ as the boundary of V. However this is exactly the flux of      

.                 through σ
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If a vector function has continuous partial derivatives 

in a 3D region V bounded by a finite boundary σ, we can write

( ) ( )∫∫∫∫∫ =
V

dzdydxzyxfSdzyxf ,, div,,
σ

where the surface on the left-hand side of the equation is 

oriented so that the normals point outwards. 

The most general form of this formula was first proved by 
Mikhail Vasilevich Ostrogradsky in 1828. 
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Example

Calculate the volume of an area V bounded by a closed 
surface σ given by the parametric equations
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Let us define a vector field  ( ) kzjyixzyxf ++=,,

By Gauss's-Ostrogradsky's theorem, we have
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where A, B, C are the coordinates of a normal to σ, that is,
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For example, if B is a ball of radius r, we have 
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The curl of a vector field

l

nσ

vector field

For a plane σ determined by its unit normal containing a closed 

curve l with a fixed point M inside the area A bounded by l, define 

the quantity  
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If                   has continuous partial derivatives, we can calculate

( ) ( )MlnCMnC
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,,lim, σσ →
=

and C (     , M) does not depend on the choice of l and the 

way it shrinks to M. It is only determined by the point M

and the direction of

It can further be proved that there exists a universal  vector c(M) 

such that   ( ) ( )MnCnMc ,σσ =⋅

for every normal     determining the plane σ  
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Using the above method we can assign a vector c(M) to every 

point M in the 3D-region in which the vector field satisfies the 

assumptions (continuous partial derivatives). In other words, we

have defined to the original vector field a new vector 

field

This vector field is called the curl of and denoted by

curl or rot
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The last formula can be written using the following formal 

determinant
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Suppose that the vector field represents a flow of fluid.

Think of a very small turbine on a shaft positioned at a point M.

Through the fluid flow, the turbine will turn at a speed s.

Let us move the shaft changing its direction while leaving the 

turbine at the point M. In a certain direction , the speed s of 

the turbine will reach its maximum. Then is clearly the curl 

of  at M.   
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Irrotational vector field

If ( ) 0,, curl ≡zyxf in a 3D-region A, we say that the field 

is irrotational . 

Recall that has to be irrotational if line integrals of 

the vector field are to be independent of the line along which 

the integral is calculated being only functions of the initial 

and final points.  
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Every continuously differentiable vector function defined

in a region A (subject to mild restrictions) can be expressed as

a sum of two vector functions and such that

.         is solenoidal and is irrotational.

The possibility of such decomposition greatly simplifies

the study of many velocity and force fields occurring in physics.
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Stokes formula

Let a  vector field be defined in a 3D region A with 

continuous first partial derivatives. Let a simple 3D surface σ be 

given in A bounded by a closed regular curve l. Then the flux of 

the curl of through σ equals the line integral of .             

.               alongl. Formally
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Example

Use the Stokes formula to calculate the second type line 

integral of the vector field

along the circle C  x2 + y2 = r2.

We have

Consider the semi-sphere S:
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Since, clearly, C is the boundary of S, we can use the Stokes 
formula:
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