
Ordinary differential equations - ODE

An n-th order ordinary differential equation (ODEn) is an equation
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Examples
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Solution to a differential solution

Defining a solution to a general differential equation of order n

in an exact way is rather a tricky business. However, since in 

most of the ordinary situations, this notion is quite intuitive, by 

way of an example, we will only define precisely what we 

understand under a solution to a first order differential solution.  
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Let                      be a differential equation where       is a 

continuous function on              .
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We say that a function                is a solution to ( )' ,y f x y=( )u u x= if

u (x) has a continuous derivative in some interval  ( )1J Gπ⊆

the entire graph of u (x) lies in G, that is,  ( ), ,x y x G x J ∈ ∈ 
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Using another example, we shall now explain the difference 

between a general , particular, and singular solution to a 

differential equation: 



Let us have a differential equation  
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Since no other restrictions are given, G is E2 and we can 

easily verify that                         is a solution to     

for  any            and so is the function           
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is a general solution to ( )31
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a general solution represents a set of solutions to a differential 

equation that only differ from each other by the values of a 

parameter (in a general case of several parameters) lying in a 

set of admissible values    
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a particular solution is a solution to a differential equation 

that can be obtained from a general solution by choosing a 

value of the parameter (parameters)   



( ) 0u x ≡ is a singular solution to ' 23y y=

a singular solution to a differential equation is such a 

solution for which no value of the parameter in a general 

solution exists, that is, it cannot be obtained by substituting 

into a general solution.    



Cauchy initial problem

We are to find a solution                 to the differential equation
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such that it satisfies an initial condition
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A solution to a Cauchy initial problem in the general case may 

not be easy to find. Sometimes it can even be proved that no 

"analytic" solution exists. A solution is called analytic if it can 

be expressed in terms of a finite set of "basic known functions"

combining them using a finite number of arithmetic operations 

and embeddings.     


