
An (infinite) sequence of real numbers
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For a given sequence                  , we say that almost all of its 
terms have a property P if an index N exists such that an has the 
property P whenever n >N.
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Geometric sequence
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In 1202 the mathematician Leonardo of Pisa, also called Fibonacci, 
published an influential treatise, Liber abaci. It contained the following 
recreational problem: "How many pairs of rabbits can be produced from 
a single pair in one year if it is assumed that every month each pair 
begets a new pair which from the second month becomes productive?" 



The preceding example has shown that a sequence may also be 
defined using recurrence formulas, that is, defining the first few 
terms of the sequence and then giving a formula expressing the 
n-th sequence term through some of the preceeding terms. The 
Fibonacci “rabit-pair” sequence might be defined as follows: 
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1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,...

Explicit formulas may also be found 
equivalent to the recursive definition
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1 2 3a a a< < <L (strictly) increasing sequence

1 2 3a a a≤ ≤ ≤L non-decreasing sequence

1 2 3a a a> > >L (strictly) decreasing sequence

1 2 3a a a≥ ≥ ≥L non-increasing sequence



1 2 3, , , ,ia a a a a≤K K sequence bounded above with a as an 
upper bound

1 2 3, , , ,ia a a a b≥K K sequence bounded below with b as a 
lower bound

1 2 3, , , ia a a b a a≤ ≤K bounded sequence 



by discarding some of its terms while still leaving an infinite 

number of them. 

Subsequence

Let                                   be a sequence and let     be an 

increasing sequence of natural numbers (indices). Then we have 

sequence                                       , which is called a subsequence  
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The limit of a sequence
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Examples

{ }2 1 1,3,5,n − = KK strictly speaking, no limit exists, but in 
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Every sequence has at most one limit



Rules for calculating limits of sequences:
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If a sequence         is bounded above and non-decreasing, it has a 
limit 
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If a sequence         is bounded below and non-increasing, it has a 
limit 
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Point of condensation

Let              be a sequence. We say that a is a point of condensation 

of                if, for every          , we have              for an infinite 

number of indices
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It is easy to see that the points of condensation of the above 
sequence are the numbers 

1,0, 1−



Every bounded sequence has at least one point of 
condensation.

From every bounded sequence, we can select a 
subsequence that is convergent. 

The set of all the points of condensation of a 
sequence has the least and the greatest element. 



The greatest point u of condensation of a sequence              is 

called an upper limit of               (or a limes superior).
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The lowest point l of condensation of a sequence              is 

called a lower limit of               (or a limes inferior).
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