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which is called an (infinite) (number) series with terms  na
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We say that a series           converges and has a finite sum s, which is 

denoted                                                         if 
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Example
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Example

The series ( ) ( ) ( )1
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Necessary condition of convergence

If a series            converges, then na∑ lim 0n
n

a
→∞

=



Example

The series                                                      is called harmonic. 

It diverges even if, clearly,  
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Geometric series

A geometric series 2
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For a positive integer p, both series              and                   

either converge or diverge at the same time. If they converge, 

then
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For a non-zero real k, both series              and               either 

converge or diverge at the same time. If they converge, then
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A convergent series has the property that its neighbouring terms

can be associated without changing the sum of the series, which is 

what the following theorem says:
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Note that a divergent series may become convergent after its 

terms are associated as the following example shows
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Sum and difference of series

For two series                           we define their sum or 

difference as the sum or difference of their corresponding 

terms, that is, 
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Series with positive (non-negative) terms

For a series with positive (non-negative) terms the following 
assertions are obvious:

The sequence of partial sums of a series with positive (non-
negative) terms is increasing (non-decreasing)

If the sequence of partial sums of a series with positive 
(non-negative) terms has an upper bound, the series 
converges

A series with positive (non-negative) terms cannot oscillate 



Example

The series               converges for          .
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The previous formulas hold if                      , which means that 
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which is the assumption of the assertion.


