
Let                      be series with non-negative terms. Let, for almost 

every n,            . Then if           converges, so does          . If                     

diverges, so does         .
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1st comparison criterion



The proof of the previous assertion uses the following fact, which 

could also be proved about sequences: 

If a sequence is non-decreasing and bounded above or non-

increasing and bounded below, it converges.



Example

The series              converges.2
1

1

n n

∞

=
∑

( )2

1 1
 for 2

1
n

n n n
< ≥

−

( )
1 1 1 1

2 1 3 2 4 3 1

1 1 1 1 1 1 1 1 1 1
1 1

1 2 2 3 3 4 1 1

n n

n n n n

+ + + + =
⋅ ⋅ ⋅ ⋅ −

= − + − + − + − + − = − →
− −

L

L



Let                      be series with non-negative terms. Let, for almost 

every n,                    . Then if           converges, so does     . 

If            diverges, so does         .
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The previous comparison tests give rise to various tests based on 
comparison with a geometris series

2 na aq aq aq+ + + + +L L

which is known to be convergent if q < 1.



Root test

Let               be a series with non-negative terms. Let, for almost 

every n,                                  then the series converges. If, on 

the contrary, we have                for almost every n, then               

diverges.  
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This can also be expressed in a different way:

Let               be a series with non-negative terms.

Let,                       If            , then the series converges.

If           , then it diverges.  

na∑

lim .n
n

n
a q

→∞
= 1q <

1q >



Example

Find out whether the series                                    is convergent.
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Quotient test

Let             be a series with positive terms. Let            

for almost every n and         . Then           converges.

If                  for almost every n, then          diverges.
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Quotient test - its limit variant

Let             be a series with positive terms. Let            

and         . Then           converges. If , it diverges
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Example

Is the series             convergent?
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Integral test

Let a function            be positive and non-increasing on           . ( )f x [ )1,∞

( )If  for 1, 2,3,nf n a n= = K , then the series            converges 

exactly when the integral                         is convergent.
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Example

The series                     converges for          and diverges for                     
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