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Note that, in the last example, although the sequence functions 
are all continuous, the limit function is not. 

Thus point-wise convergence may define non-continuous 
using continuous ones.

We shall examine such sequences of continuous functions 
that only produce continuous results. 
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A function sequence                    converges uniformly to a 

function          on [a,b] if, for every ε, there exists an index N

such that, for every                 and for every            , we have 
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A function series                    converges uniformly to a 

function          on [a,b] if, the sequence 
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Comparison of point-wise and uniform convergence

In a point-wise convergence, the choice of the index N depends 
both on the point chosen in [a,b] and the          and so we can write 0ε >

( ),N N xε= This might, for example result in the following:

There might exist a sequence of points [ ]1 2 3, , , ,x x x a b∈K

such that the sequence of indices ( ) ( ) ( )1 2 3, , , , , ,N x N x N xε ε ε K

is unbounded.

With a uniform convergence, this cannot occur since for each  0ε >

there exists a uniform N regardless of the choice of [ ],x a b∈



Cauchy's test of uniform convergence

Let a function sequence                  converge to a function .              

It converges uniformly to           if and only if
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The above sequence does 
not converge uniformly. 
To prove this we will 
apply Cauchy's test and 
show that 
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Let             and m be an arbitrary index. Certainly, by letting x

sufficiently close to zero  so that, say, x = x0 , we will have

On the other hand, it is clear that if we chose an index n > m

sufficiently large we can "push this value down" so that        
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Uniform convergence of sequences and series conserves 

some of the properties of the individual functions such as 

continuity and integrability.



Let a sequence                   of functions continuous on [a,b] 

converge to a function f (x). Let                   converge 

uniformly. Then   f (x)  is continuous.
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Let a sequence                   of functions integrable on [a,b] 

converge to a function f (x). Let                   converge 

uniformly. Then   f (x)  is integrable and
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If all the functions of a sequence or a series are differentiable on 

[a,b], it does not necessarily mean that so is their limit or sum as

the  example below shows: 

The series
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has terms differentiable on             and converges uniformly 

to the function y = |x|, which is not differentiable at x = 0.
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Let                   be a function sequence with every         having a 

continuous derivative in [a,b]. Let                  converge at at least 

one point                   and let the sequence                converge 

uniformly in [a,b]. Then                    converges uniformly in [a,b], 

the limit             of this sequence is differentiable in [a,b] and   
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For the conservation of differentiation, only weaker theorems can 
be proved:
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If                      for every n and the number series            

converges, then                  uniformly converges.  

Uniform convergence test for series (Weierstrass)

Let                be a series of functions defined on [a,b]. 
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Example

The Weierstrass test can be used to prove the uniform 
convergence of the series from the previous example:
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Now the series in brackets is selected from the series          

whose convergence can be proved using, for example, the 

integral criterion.
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is a decreasing sequence converging to zero and if the partial 

sums of                   are uniformly bounded, that is, if, for every                

. and every n, we have                            where M > 0. 

Uniform convergence test for series (Dirichlet)
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