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is called a power serieswith the centre atx0 or centred aroundx0

A power series centred around zero is a special case: 
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If a power series                         converges at a point  , then it 

converges absolutely in the open interval                       

and converges uniformly in each closed interval                 
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Unless a power series                         converges at any real number, 

a number r > 0 exists such that                          converges absolutely 

for each x such that                    and diverges for any other x
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This number is called the radius of convergence and 
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Note: if a power series only converges at its center, we put r = 0. 



Let                          be a power series and let  limsupn
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∑What is the radius of convergence of the power series           ?
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Let k be an arbitrary natural number. Then, for n > k we have  
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Derivative of a power series

If we differentiate each term of the power series               , 

we obtain a new power series
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This new power series is then called the derivative of a given 

power series.



The power series
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and its derivative
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have the same radius of convergence
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Since                            is again a power series with the identical 

radius of convergence r it has again a derivative in the 

convergence interval (−r, r). This derivative is again a power 

series with the same radius of convergence r and so on:
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Example

We know that                                             for 2 3 1
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Differentiating the series term by term yields:
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Integral of a power series

Let                                      be a power series with r as the radius 

of convergence. We can integrate it term by term from 1 to x

where             obtaining 
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The radius of convergence of the resulting series is again r.



Example

If we integrate term by term the power series
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from 0 to x where                  , we obtain the power series
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Note that the resulting power series converges even for x = 1 
but not for x = −1.



Example

If we integrate term by term the power series
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from 0 to x where                  , we obtain the power series
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Note that the resulting power series converges even for x = −1 
and x = 1.



Calculating π

The preceding formula can be used for calculating numerically the 
constant  π
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However, this series converges very slowly and is therefore not at 
all suitable for numerical calculation. To reach a reasonable 
accuracy of several decimal places probably several billions terms 
would have to be calculated.



The reason is that we have to use x at the end of the convergence 
interval. For practical calculations, better schemes have been 
devised such as: 
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This identity was discovered by Machin in the 18th century.  
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How Machin's identity can be derived:
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This can be 
verified by 
calculation
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