Let a functionf (x) be given as the sum obagr series in the

convergence interval of the power seriebx) =Y a, (x=%,)"
n=0

Then such a power series is unique and its coeffisiare given

(n)
by the formulag_ = (%)
n!




If a functionf (x) has derivatives of all orslatx, then we can

formally write the corresponding Taylor series

f'(%)
1!

(X=%o)+

The power series created in this way is then called dlyéor
seriesof the functionf (x) . A Taylor series fox,=0 s called

MacLaurin series
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There are functiong (x)

whose formally generated Taylor series do not converge to

A condition that guarantees thats will not happen says that

the derivatives of (x) are all uniformly bounded

In a neighbourhood of,.




There are functions with a Taylor series that, as a
power series, converges to quite a different function

as the following example shows:
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For xZ0 , we have

3 1
dx Lot
and forx = 0:
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In a similar way, we could also show that

This means that the Taylor series correspondiri@xo

converges to a constant function that is equal to zero at all
1

points. But clearlye7 0 foramyZzO



Taylor series of some functions:




