
Let a function           be given as the sum of a power series in the 

convergence interval of the power series             
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Then such a power series is unique and its coefficients are given 

by the formula
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If a function           has derivatives of all orders at x0, then we can 

formally write the corresponding Taylor series

( )f x

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 30 0 0
0 0 0 0

' '' '''

1! 2! 3!

f x f x f x
f x f x x x x x x x≈ + − + − + − +L

The power series created in this way is then called the Taylor 

series of the function           . A Taylor series for             is called 

MacLaurin series. 
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There are functions  f (x)

whose formally generated Taylor series do not converge to it.

A condition that guarantees that this will not happen says that

the derivatives of f (x) are all uniformly bounded

in a neighbourhood of x0.    



There are functions with a Taylor series  that, as a 

power series, converges to quite a different function 

as the following example shows:    
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For           , we have 0x ≠
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and for x = 0:
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In a similar way, we could also show that
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This means that the Taylor series corresponding to f (x) 

converges to a constant function that is equal to zero at all 

points. But clearly,                for any           . 
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Taylor series of some functions:
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