
Binomial distribution

A binomial experiment has four properties:

1) it consists of a sequence of n identical trials;

2) two outcomes, success or failure, are possible on each trial;

3) the probability of success on any trial, denoted p, does not 
change from trial to trial;

4) the trials are independent. 



Let us conduct a binomial experiment with n trials, a probability 
p of success  and let X be a random variable giving the number 
of successes in the binomial experiment. Then X is a discrete 
random variable with the range {0, 1, 2, ..., n} and the 
probability function  
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We say that X has a binomial distribution.



Binomial distribution with n=10, p=0.5
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Binomial distribution with n=10, p=0.25
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Expectancy  and variance of a binomial distribution

For a random variable X with a binomial distribution Bi(n,p) we 
have

( ) pnXE =
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we can calculate

The same identity can be used to calculate D(X)
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Poisson distribution 

Poisson distribution is defined for a discrete random variable X
with a range {0, 1, 2, 3, ... } denoting the number of occurren-
ces of an event A during a time interval            if the following 
conditions are fulfilled:

( )21,TT

1) given any two occurrences A1 and A2, we have  

( ) ( )212 | APAAP =

2) the probability of A occurring during an interval ( )21, tt

with                          equals to               where c is fixed          2211 TttT ≤<≤ ( )12 ttc −

3) denoting by P12 the probability that E occurs at least   
twice between t1 and t2, we have 

0lim
12

12

21

=
−→ tt

P
tt



The Poisson distribution Po(λ) is given by the probability 
function 

( )
!x

exp
xλλ−=

1
!3!2!1

1
!

32

0

==






 ++++= −−
∞

=

−∑ λλλλ λλλλ
eee

x
e

x

x

L



Poisson law with E(X) = 5
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( ) λ=XE

( ) λ=XD

The expectancy and variance of a random variable X with Poisson 
distribution are given by the following formulas 
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Relationship between Bi(n,p) and Po(λ)

For large n, we can write 

)(),( nppn PoBi ≈



Comparing Bi(20,0.25) with Po(5)
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Normal distribution law

A continuous random variable X has a normal distribution law 
with E(X) = µ and D(X) = σ if its probability density is given 
by the formula
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Standardized normal distribution 

A continuous random variable X has a standardized normal 
distribution if it has a normal distribution with  E(X) = 0 and 
D(X) = 1 so that its probability density is given by the formula
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Standardized normal distribution law (Gaussian curve)



There are several different ways of obtaining a random variable X
with a normal distribution law. 

For large n, binomial and Poisson distributions asymptotically 
approximate normal distribution law

If an activity is undertaken with the aim to achieve a value µ, but 
a large number of independent factors are influencing the 
performance of the activity, the random variable describing the 
outcome of the activity will have a normal distribution with the
expectancy µ.

Of all the random variables with a given expectancy µ and 
variance σ2, a random variable with the normal distribution 
N(µ,σ2) has the largest entropy.


