
Mean value of a discrete random variable

Let a discrete random variable X assume values from a set M and 

have probability function p (x). We define the mean value or 

expectancy E (X) as follows:
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Note that if M is infinite, the mean value may not exist.



Mean value of a continuous random variable

Let a continuous random variable X assume values from a set M

and have density function p (x). We define the mean value or 

expectancy E (X) as follows:
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provided that the integral over M exists.



Properties of expectancy

If the random variable X has an expectancy E (X), then 

the random variable Y = cX with c a real constant has the 

expectancy E (Y) = c E (X).  

If the random variables                        have expectancies

.                                       , then the random variable                    

.                                    has the expectancy
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Variance of a random variable

For a random variable X (discrete or continuous) with expectancy 

E (X) we can define its variance D (X) as follows:  
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This formula has another equivalent form:
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Thus the variance of a random variable is the difference between the 

expectancy of the square of X and the square of the expectancy of X.



Properties of variance

If Y = c X with c a real constant, then D (Y) = c2 D (X).

If                          are independent random variables and

.                                  , then 
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Standard deviation

If a random variable X has a variance D (X), then we define its 

standard deviation as               . It is sometimes denoted   )(XD σ
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Quantiles

Given a random variable X with probability distribution F(x) 
and a number p, we define a p-quantile xp by the following 
formulas 
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For a continuous increasing F(x) a quantile is actually the 
inverse of F(x) 

( ) pxF p = ( )pFxp
1−=

For a distribution F(x) with jumps, we can determine quantiles 
as follows
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In intervals where the distribution is constant, the corresponding 
quantile is not determined uniquely



Special quantiles

x0.01 - percentile: x0.35 - 35-th percentile

x0.25 - first quartile

x0.50 - second quartile = median

x0.75 - third quartile



Let, for a discrete random variable, the probability distribution be 
given by the probability function 
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Example

Calculate the median of a discrete random variable whose 
probability function is given by the following table   
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We have 0.12 + 0.25 = 0.37 and 0.12 + 0.25 + 0.18 = 0.55 
so that  
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