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We first prove this for n = 1, that is,  2
1~ χX

Put .2XY = The distribution G(y) of Y for 0≤y equals

zero and, for y > 0, we have 
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Next we shall use induction by n.



Let us have for some k:
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We can  now use the following assertion in the theory of proba-
bility:

If (X, Y) is a random vector with a density p(x,y), then the 
random variable Z = X + Y has the density  
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Since                                and          are independent, we have22
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We use a transformation z = yu with the Jacobian determinant 
J =  y
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Let X and Z be independent random variables such that

( )1,0~ NX and 2~ kZ χ then the random variable

kZ

X
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has Student's t-distribution with k degrees of freedom. This 
distribution is denoted by tk and has the following probability 
density
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Probability density of t[k]

k = 1

k = 1 000

Note:

For k = 1000, t[k] is practically 
identical with standardized nor-
mal variable



Expectancy and variance of t[k]

Except for k = 1, the expectancy of t[k] is 0

For k = 1, 2 the expectancy and variance do not exist
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Derivation of the density for tk

Since X and Z are independent, their simultaneous density  is 
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Performing a transformation 
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with the inverse UZkUTX == , and Jacobian determinant

kuJ = , the simultaneous density h(t,u) can be written as
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After some simplification, we obtain 
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Integrating by u, the density fk(t) of tk can now be obtained 
as the marginal density of h(t,u) 
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since the integral is of the density of 
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Let                                 be independent random variables, then   22 ~ and ~ nm YX χχ

then the random variable                    has a Fisher-Snedecor   
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distribution Fm,n with m and n degrees of freedom with a density
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for x > 0, otherwise zero. 



Plot of  fm,n(x)  for m = 15, n = 10


