Let X, X,,..., X, be independent randomades each having the
standardized normal distributidé{0,1) , thie@ random variable

Y =X+ X7+ +X?

has echi-squared distribution with n degrees of freedom

denoted by)(f with the probabillity density defined as
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We first prove this fon = 1, that is,X ~ x?

Put Y =X?  The distributionG(y) of Yfor y<0 equals

zero and, fory > 0, we have

6ly)= Pl <3)= PX* <y)= Py < X < 1y)= 0{y)- (- 3)

Next we shall use induction oy



Let us have for somie
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fly)= 27r(k 2)” for y> 0.
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We can now use the following assertion in the theory dfgtro
bility:

If (X, Y) is a random vector with a densfx,y), then the
random variabl = X + Y has the density

f(z):jp(u,z—u)du



SinceX/ +XZ+---+X? adgf,  areindependent, we have

1 ( k/2—1 12 S
f(Z) 2k/2 (k/2)2]/2 ]/2 _([ y-— Z € ZeZdZ

We use a transformatiar yu with the Jacobian determinant
J=Yy
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Let X and Z be independent random variables suagh th

X ~N(01) andZ ~ x2 then the random variable

X
Z k

hasStudent'st-distribution with k degrees of freedom. This
distribution is denoted by and has the following probability
density
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Expectancy and variance of[k1

Except fork = 1, the expectancy oftis 0

Fork=1, 2 the expectancy and variance do not exist

Fork> 2 we haveD(t, ) :é



Derivation of the density fay

SinceX andZ are independent, their simultaneous density is
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Performing a transformation

X
T=2_, U=2Z
JZ Tk

with the inverseX =T./U/k, Z =U and Jacobian determinant

J =./u/k, the simultaneous densitft,u) can be written as



h(t,u):ie‘tzu/2k L g uk, tORuU>0

After some simplification, we obtain
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Integrating by, the densityf,(t) of t, can now be obtained
as the marginal density oft,u)



We will use a transformation
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since the integral is of the densityx\ifﬂ



Let X ~ y2>andY ~ ¥ be independemidom variables, then
X/m
Y/n
distributionF,, . with mandn degrees of freedom with a density

then the random variablZ = hashdf-Snedecor
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for x> 0, otherwise zero.



Plot of f,,,(X) form=15n=10
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